论文标题

扩展正态性:从标准正态分布的时刻产生的单位分配的情况

Extending normality: A case of unit distribution generated from the moments of the standard normal distribution

论文作者

Concha-Aracena, Miguel S., Barrios-Blanco, Leonardo, Elal-Olivero, David, Silva, Paulo Henrique, Nascimento, Diego Carvalho do

论文摘要

本文提出了一个重要的定理,该定理表明,从标准正态分布的矩中,人们可以产生源自模型家族的密度函数。此外,我们讨论了通过转换实现不同的随机变量域。例如,我们从拟议的定理中采用了第二阶时,并对其进行了转换,这使我们能够以单位分配为例。我们将其命名为Alpha-Unit(AU)分布,其中包含一个单个正参数$α$($ \ text {au}(α)\ [0,1] $)。我们介绍了其特性,并显示了$α$参数的两种估计方法,最大似然估计器(MLE)和均匀的最小值无偏见估计器(UMVUE)方法。为了分析估计量的统计一致性,进行了蒙特卡洛模拟研究,并在其中证明了鲁棒性。作为现实世界的应用,我们采用了两组单位数据,第一个涉及后期军事时期智利通货膨胀的动态,而另一种是关于Atacama沙漠中空气每日最大相对湿度的最大相对湿度。在两种情况下,每当数据显示大于0.4且极度不对称的尾巴时,AU模型都是竞争性的。我们将我们的模型与其他常用的单元模型进行了比较,例如beta,kumaraswamy,logit-Normal,单纯形,单位半正常和单位 - 林德利分布。

This article presents an important theorem, which shows that from the moments of the standard normal distribution one can generate density functions originating a family of models. Additionally, we discussed that different random variable domains are achieved with transformations. For instance, we adopted the moment of order two, from the proposed theorem, and transformed it, which allowed us to exemplify this class as unit distribution. We named it as Alpha-Unit (AU) distribution, which contains a single positive parameter $α$ ($\text{AU}(α) \in [0,1]$). We presented its properties and showed two estimation methods for the $α$ parameter, the maximum likelihood estimator (MLE) and uniformly minimum-variance unbiased estimator (UMVUE) methods. In order to analyze the statistical consistency of the estimators, a Monte Carlo simulation study was carried out, where the robustness was demonstrated. As real-world application, we adopted two sets of unit data, the first regarding the dynamics of Chilean inflation in the post-military period, and the other regarding the daily maximum relative humidity of the air in the Atacama Desert. In both cases shown, the AU model is competitive, whenever the data present a range greater than 0.4 and extremely heavy asymmetric tail. We compared our model against other commonly used unit models, such as the beta, Kumaraswamy, logit-normal, simplex, unit-half-normal, and unit-Lindley distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源