论文标题
使用未来重力波探测器网络从完整的二进制中子星聚合过程中揭示有关近核浓密物质的信息
Unraveling information about supranuclear-dense matter from the complete binary neutron star coalescence process using future gravitational-wave detector networks
论文作者
论文摘要
引力波为我们提供了一个非凡的工具来研究中子星内的物质。尤其是,邮政信号探测一个极端的温度和密度状态,并将有助于揭示有关近核密度物质状态方程的信息。尽管当前的探测器对合并之前的二进制中子恒星发出的信号最敏感,但现有探测器的升级和下一代检测器的构建将使验证后检测可行。为此,我们为由二进制中子星系发出的Inspiral-Merger-Postmerger信号提供了一个新的分析,频域模型。信号的灵感和合并部分是用iMrphenomd_nrtidalv2建模的,我们使用两种不同的方法描述了Postmerger的主要发射峰,其中一种方法是:一种方法:其中一种是免费的,其中一种是免费的,其中一种是通过Quasi-universal关系对其进行建模。我们在参数估计分析中测试了新的完整波形模型的性能,研究了从我们开发的模型获得的模拟信号,并通过注入数值相对性波形。我们研究了不同检测器网络的性能,以确定未来探测器将对我们的分析带来的改进。我们考虑高级Ligo+和高级处女座+,Kagra和Ligo-India。我们还研究了像Nemo这样的Kilohertz带中具有高灵敏度的检测器的可能影响,最后我们将这些结果与第三代探测器,Einstein望远镜和宇宙探险家进行了比较。
Gravitational waves provide us with an extraordinary tool to study the matter inside neutron stars. In particular, the postmerger signal probes an extreme temperature and density regime and will help reveal information about the equation of state of supranuclear-dense matter. Although current detectors are most sensitive to the signal emitted by binary neutron stars before the merger, the upgrades of existing detectors and the construction of the next generation of detectors will make postmerger detections feasible. For this purpose, we present a new analytical, frequency-domain model for the inspiral-merger-postmerger signal emitted by binary neutron stars systems. The inspiral and merger part of the signals are modeled with IMRPhenomD_NRTidalv2, and we describe the main emission peak of postmerger with a three-parameter Lorentzian, using two different approaches: one in which the Lorentzian parameters are kept free, and one in which we model them via quasi-universal relations. We test the performance of our new complete waveform model in parameter estimation analyses, studying simulated signals obtained from both our developed model and by injecting numerical relativity waveforms. We investigate the performance of different detector networks to determine the improvement that future detectors will bring to our analysis. We consider Advanced LIGO+ and Advanced Virgo+, KAGRA, and LIGO-India. We also study the possible impact of a detector with high sensitivity in the kilohertz band like NEMO, and finally we compare these results to the ones we obtain with third-generation detectors, the Einstein Telescope and the Cosmic Explorer.