论文标题
部分可观测时空混沌系统的无模型预测
Engineered second-order nonlinearity in silicon nitride
论文作者
论文摘要
缺乏氮化硅(SI3N4)中的批量二阶非线性(\ c {hi}(2))使这个低损坏的CMOS兼容平台从关键的活动功能(例如Pockels Electro-Poctic(EO)调制和有效的第二次和谐波生成(SHG))。我们证明了通过与外部应用的电场对Si3n4中的\ c {hi}(2)成功诱导,以使Si-N键对齐。这种对齐打破了SI3N4的中心对称性,并启用了散装\ c {hi}(2)。将样品加热至500°C以上,以促进螺栓。使用SI3N4微环调制器测量的螺旋和非螺旋SI3N4的EO响应之间的比较显示R33 EO组件的最高增强量。我们通过poling获得的最大\ c {hi}(2)是0.24pm/v。我们观察到测量的EO响应速度从3GHz到15GHz(3DB带宽)的速度有了显着的改善,这证实了由poling引起的EO响应的性质。这项工作为在SI3N4平台上的高速活动功能铺平了道路。
The lack of a bulk second-order nonlinearity (\c{hi}(2)) in silicon nitride (Si3N4) keeps this low-loss, CMOS-compatible platform from key active functions such as Pockels electro-optic (EO) modulation and efficient second harmonic generation (SHG). We demonstrate a successful induction of \c{hi}(2) in Si3N4 through electrical poling with an externally-applied field to align the Si-N bonds. This alignment breaks the centrosymmetry of Si3N4, and enables the bulk \c{hi}(2). The sample is heated to over 500°C to facilitate the poling. The comparison between the EO responses of poled and non-poled Si3N4, measured using a Si3N4 micro-ring modulator, shows at least a 25X enhancement in the r33 EO component. The maximum \c{hi}(2) we obtain through poling is 0.24pm/V. We observe a remarkable improvement in the speed of the measured EO responses from 3GHz to 15GHz (3dB bandwidth) after the poling, which confirms the \c{hi}(2) nature of the EO response induced by poling. This work paves the way for high-speed active functions on the Si3N4 platform.