论文标题

经典$ \ operatatorName {sl} _2(\ mathbb {c})$ chern-simons理论的手术演算

Surgery calculus for classical $\operatorname{SL}_2(\mathbb{C})$ Chern-Simons theory

论文作者

McPhail-Snyder, Calvin

论文摘要

经典的$ \ peratatorName {sl} _2(\ Mathbb {c})$ - Chern-Simons理论分配了$ 3 $ -Manifold $ m $,带有表示$ρ:π_1(m)\ to \ propatatorName \ to \ propatatorName {sl} _2(sl} _2(\ mathbb {c} c}) \ Mathbb {C} /2π^2 I \ Mathbb {z} $,实际上是卷和虚构的部分,而Chern-simons不变。现有的文献专注于使用三角剖分计算$ \ permatatorname {v} $。在本文中,我们展示了如何直接从手术图中计算$ \ operatorname {v}(m,l,ρ)$,$ m $ $ m $ a comptact取向的$ 3 $ -Manifold带有圆环边界组件,嵌入式cusps $ l $,以及表示$ρ:π_1(m \ setMinus l)(m \ setMinus \ to \ operatatorName {sl} _2(\ mathbb {c})$。当$ m $具有非发行边界$ \ operatatorName {v}(m,l,ρ)(\ mathfrak {s})$取决于一些额外的数据$ \ mathfrak {s} $,我们称之为日志decoration。我们的方法描述了与量子组密切相关的坐标系中的$ρ$,我们认为我们的构造是Witten-Reshetikhin-Turaev的量子$ \ permatatOrName {su}(2)$ Chern-Simons理论的经典,非合作版本。

Classical $\operatorname{SL}_2(\mathbb{C})$-Chern-Simons theory assigns a $3$-manifold $M$ with representation $ρ: π_1(M) \to \operatorname{SL}_2(\mathbb{C})$ its complex volume $\operatorname{V}(M, ρ) \in \mathbb{C} / 2 π^2 i \mathbb{Z}$, with real part the volume and imaginary part the Chern-Simons invariant. The existing literature focuses on computing $\operatorname{V}$ using a triangulation. In this paper we show how to compute $\operatorname{V}(M, L, ρ)$ directly from a surgery diagram for $M$ a compact oriented $3$-manifold with torus boundary components, embedded cusps $L$, and representation $ρ: π_1(M \setminus L) \to \operatorname{SL}_2(\mathbb{C})$. When $M$ has nonempty boundary $\operatorname{V}(M, L, ρ)(\mathfrak{s})$ depends on some extra data $\mathfrak{s}$ we call a log-decoration. Our method describes $ρ$ in a coordinate system closely related to quantum groups, and we think of our construction as a classical, noncompact version of Witten-Reshetikhin-Turaev's quantum $\operatorname{SU}(2)$ Chern-Simons theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源