论文标题

SA-MLP:将图形知识从GNNS蒸馏到结构感知的MLP

SA-MLP: Distilling Graph Knowledge from GNNs into Structure-Aware MLP

论文作者

Chen, Jie, Chen, Shouzhen, Bai, Mingyuan, Gao, Junbin, Zhang, Junping, Pu, Jian

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The message-passing mechanism helps Graph Neural Networks (GNNs) achieve remarkable results on various node classification tasks. Nevertheless, the recursive nodes fetching and aggregation in message-passing cause inference latency when deploying GNNs to large-scale graphs. One promising inference acceleration direction is to distill the GNNs into message-passing-free student multi-layer perceptrons (MLPs). However, the MLP student cannot fully learn the structure knowledge due to the lack of structure inputs, which causes inferior performance in the heterophily and inductive scenarios. To address this, we intend to inject structure information into MLP-like students in low-latency and interpretable ways. Specifically, we first design a Structure-Aware MLP (SA-MLP) student that encodes both features and structures without message-passing. Then, we introduce a novel structure-mixing knowledge distillation strategy to enhance the learning ability of MLPs for structure information. Furthermore, we design a latent structure embedding approximation technique with two-stage distillation for inductive scenarios. Extensive experiments on eight benchmark datasets under both transductive and inductive settings show that our SA-MLP can consistently outperform the teacher GNNs, while maintaining faster inference as MLPs. The source code of our work can be found in https://github.com/JC-202/SA-MLP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源