论文标题

部分可观测时空混沌系统的无模型预测

Split-KalmanNet: A Robust Model-Based Deep Learning Approach for SLAM

论文作者

Choi, Geon, Park, Jeonghun, Shlezinger, Nir, Eldar, Yonina C., Lee, Namyoon

论文摘要

同时定位和映射(SLAM)是一种构造未知环境的地图,并同时将移动代理的位置定位的方法。扩展的卡尔曼过滤器(EKF)已被广泛用作在线大满贯的低复杂度解决方案,该解决方案依赖于移动代理的运动和测量模型。但是,实际上,获取有关这些模型的精确信息非常具有挑战性,模型不匹配效应会导致SLAM的严重绩效丧失。在本文的启发下,受到最近提出的Kalmannet的启发,我们使用深度学习的力量在线大满贯(称为Split-Kalmannet)提出了一种强大的EKF算法。分裂 - 卡尔曼涅特的关键思想是使用测量函数的雅各布矩阵和两个复发性神经网络(RNN)来计算卡尔曼的增益。这两个RNN独立学习协方差矩阵,以进行先前的国家估计和数据创新。在计算卡尔曼增益计算中提出的拆分结构允许独立弥补状态和测量模型不匹配效应。数值仿真结果验证了分裂 - 卡尔曼涅特在各种模型不匹配方案中的传统EKF和最先进的Kalmannet算法的表现。

Simultaneous localization and mapping (SLAM) is a method that constructs a map of an unknown environment and localizes the position of a moving agent on the map simultaneously. Extended Kalman filter (EKF) has been widely adopted as a low complexity solution for online SLAM, which relies on a motion and measurement model of the moving agent. In practice, however, acquiring precise information about these models is very challenging, and the model mismatch effect causes severe performance loss in SLAM. In this paper, inspired by the recently proposed KalmanNet, we present a robust EKF algorithm using the power of deep learning for online SLAM, referred to as Split-KalmanNet. The key idea of Split-KalmanNet is to compute the Kalman gain using the Jacobian matrix of a measurement function and two recurrent neural networks (RNNs). The two RNNs independently learn the covariance matrices for a prior state estimate and the innovation from data. The proposed split structure in the computation of the Kalman gain allows to compensate for state and measurement model mismatch effects independently. Numerical simulation results verify that Split-KalmanNet outperforms the traditional EKF and the state-of-the-art KalmanNet algorithm in various model mismatch scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源