论文标题
爱因斯坦方程的无梗阻胶水
Obstruction-free gluing for the Einstein equations
论文作者
论文摘要
在本文中,我们开发了一种新的方法来解决一般相对论中的胶合问题,即沿沿空位或特征性(null)hypersurface匹配爱因斯坦方程的两个溶液的问题。与先前的结构相反,新的视角积极利用约束方程的非线性。结果,我们能够删除$ 10 $维的障碍物的障碍物空间,以供无效的空间和空间(渐近平坦)胶合问题,这是文献中以前已知的。特别是,我们表明,对于任何$ m> 0 $,都可以将任何渐近空间类的初始数据粘贴到Schwarzschild的质量$ M $的初始数据。更普遍地,与Corvino-Schoen的著名结果相比,我们的方法使我们能够选择自己粘在胶合上的Kerr Spacelike的初始数据。与我们较早的工作一样,我们的主要重点是对无效问题的分析,在该问题中,我们开发了一种将低频线性分析与高频非线性控制相结合的新技术。通过解决特征初始值问题,可以得出相应的空格结果后验。
In this paper we develop a new approach to the gluing problem in General Relativity, that is, the problem of matching two solutions of the Einstein equations along a spacelike or characteristic (null) hypersurface. In contrast to the previous constructions, the new perspective actively utilizes the nonlinearity of the constraint equations. As a result, we are able to remove the $10$-dimensional spaces of obstructions to the null and spacelike (asymptotically flat) gluing problems, previously known in the literature. In particular, we show that any asymptotically flat spacelike initial data can be glued to the Schwarzschild initial data of mass $M$ for any $M>0$ sufficiently large. More generally, compared to the celebrated result of Corvino-Schoen, our methods allow us to choose ourselves the Kerr spacelike initial data that is being glued onto. As in our earlier work, our primary focus is the analysis of the null problem, where we develop a new technique of combining low-frequency linear analysis with high-frequency nonlinear control. The corresponding spacelike results are derived a posteriori by solving a characteristic initial value problem.