论文标题

野外无人机的基于视觉的无GNSS本地化

Vision-based GNSS-Free Localization for UAVs in the Wild

论文作者

Gurgu, Marius-Mihail, Queralta, Jorge Peña, Westerlund, Tomi

论文摘要

考虑到在工业和研究方案中无人驾驶汽车(UAV)应用的加速开发,使用基于GNSS的,基于视觉的方法,越来越需要将这些空中系统定位在非城市环境中。我们的论文提出了一种基于视觉的本地化算法,该算法利用深层特征来计算野外无人机飞行的地理坐标。该方法基于无人机摄像头捕获的RGB照片的显着特征,以及由地图的预制地图的部分组成的部分,该图是由地理参考的开源卫星图像组成的。实验结果证明,基于视觉的本地化与基于GNSS的传统方法具有可比的精度,这些方法是基础真理。与最先进的视觉探针(VO)方法相比,我们的解决方案是为长途,高空无人机飞行而设计的。代码和数据集可在https://github.com/tiers/wildnav上找到。

Considering the accelerated development of Unmanned Aerial Vehicles (UAVs) applications in both industrial and research scenarios, there is an increasing need for localizing these aerial systems in non-urban environments, using GNSS-Free, vision-based methods. Our paper proposes a vision-based localization algorithm that utilizes deep features to compute geographical coordinates of a UAV flying in the wild. The method is based on matching salient features of RGB photographs captured by the drone camera and sections of a pre-built map consisting of georeferenced open-source satellite images. Experimental results prove that vision-based localization has comparable accuracy with traditional GNSS-based methods, which serve as ground truth. Compared to state-of-the-art Visual Odometry (VO) approaches, our solution is designed for long-distance, high-altitude UAV flights. Code and datasets are available at https://github.com/TIERS/wildnav.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源