论文标题

大规模MIMO系统中联合学习的随机正交化

Random Orthogonalization for Federated Learning in Massive MIMO Systems

论文作者

Wei, Xizixiang, Shen, Cong, Yang, Jing, Poor, H. Vincent

论文摘要

我们提出了一种新颖的通信设计,称为随机正交化,用于在大量的多输入和多输出(MIMO)无线系统中进行联合学习(FL)。随机正交化的主要新颖性来自FL的紧密耦合以及大量MIMO的两个独特特征 - 通道硬化和有利的传播。结果,随机正交化可以实现自然的空中模型聚集,而无需用于FL的上行链路阶段发射机侧通道状态信息(CSI),同时大大降低了接收器处的通道估计开销。我们将此原理扩展到下行链路通信阶段,并为FL开发了一种简单但高效的模型广播方法。我们还通过为上行链路和下行链路通信提出增强的随机正交设计而放松了大规模的MIMO假设,这些设计不依赖于通道硬化或有利的传播。对通信和机器学习绩效进行了理论分析。特别是,建立了融合率,客户数量和天线数量之间的明确关系。实验结果证明了大型MIMO中FL随机正交化的有效性和效率。

We propose a novel communication design, termed random orthogonalization, for federated learning (FL) in a massive multiple-input and multiple-output (MIMO) wireless system. The key novelty of random orthogonalization comes from the tight coupling of FL and two unique characteristics of massive MIMO -- channel hardening and favorable propagation. As a result, random orthogonalization can achieve natural over-the-air model aggregation without requiring transmitter side channel state information (CSI) for the uplink phase of FL, while significantly reducing the channel estimation overhead at the receiver. We extend this principle to the downlink communication phase and develop a simple but highly effective model broadcast method for FL. We also relax the massive MIMO assumption by proposing an enhanced random orthogonalization design for both uplink and downlink FL communications, that does not rely on channel hardening or favorable propagation. Theoretical analyses with respect to both communication and machine learning performance are carried out. In particular, an explicit relationship among the convergence rate, the number of clients, and the number of antennas is established. Experimental results validate the effectiveness and efficiency of random orthogonalization for FL in massive MIMO.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源