论文标题
通过传输几何原始素来零射点云进行分割
Zero-shot point cloud segmentation by transferring geometric primitives
论文作者
论文摘要
我们研究了转导零点云语义分割,在该分段中,网络在可见对象上进行训练并能够分割看不见的对象。 3D几何元素是暗示新型3D对象类型的重要提示。但是,以前的方法忽略了语言与3D几何元素之间的细粒度关系。为此,我们提出了一个新颖的框架,以学习在可见和看不见类别的对象中共享的几何原形,并在语言和学习的几何图中采用细粒度的对齐方式。因此,在语言的指导下,网络识别了用几何原始物所示的新颖对象。具体而言,我们制定了一种新的点视觉表示形式,即该点特征的相似性向量与可学习的原型,其中原型会通过反向传播自动编码几何原语。此外,我们提出了一种新颖的不知名的信息损失,以将视觉表示与语言保持一致。广泛的实验表明,我们的方法在谐波卑鄙的离子(HIOU)中大大优于其他最先进的方法,而在S3DIS,S3DIS,SCANNET,SEMANTICKITTI,SEMANTICKITTI和NUSCENES和NUSCENES CATASETASETASTASETASS,SCANNET,SEMANTICKITTI和NUSCENES,相应地相应地。可以使用代码(https://github.com/runnanchen/zero-hot-point-cloud-分割)
We investigate transductive zero-shot point cloud semantic segmentation, where the network is trained on seen objects and able to segment unseen objects. The 3D geometric elements are essential cues to imply a novel 3D object type. However, previous methods neglect the fine-grained relationship between the language and the 3D geometric elements. To this end, we propose a novel framework to learn the geometric primitives shared in seen and unseen categories' objects and employ a fine-grained alignment between language and the learned geometric primitives. Therefore, guided by language, the network recognizes the novel objects represented with geometric primitives. Specifically, we formulate a novel point visual representation, the similarity vector of the point's feature to the learnable prototypes, where the prototypes automatically encode geometric primitives via back-propagation. Besides, we propose a novel Unknown-aware InfoNCE Loss to fine-grained align the visual representation with language. Extensive experiments show that our method significantly outperforms other state-of-the-art methods in the harmonic mean-intersection-over-union (hIoU), with the improvement of 17.8\%, 30.4\%, 9.2\% and 7.9\% on S3DIS, ScanNet, SemanticKITTI and nuScenes datasets, respectively. Codes are available (https://github.com/runnanchen/Zero-Shot-Point-Cloud-Segmentation)