论文标题
Millenniumtng项目:流体动力全物理模拟和首次查看其星系簇
The MillenniumTNG Project: The hydrodynamical full physics simulation and a first look at its galaxy clusters
论文作者
论文摘要
宇宙学模拟是理解我们宇宙中非线性结构形成并将其与大规模观察相关联的重要理论支柱。在几篇论文中,我们介绍了我们的千禧年(MTNG)项目,该项目提供了一组全面的高分辨率,大容量的宇宙结构形成模拟,旨在更好地理解大尺度上的物理过程并帮助解释即将进行的大规模大规模的星系调查。我们在这里关注完整的物理盒MTNG740,该盒子计算$(740 \,\ Mathrm {mpc})^3 $,其Baryonic质量分辨率为$ 3.1 \ times 〜10^7 \,\ Mathrm {m_ \ odot} $ firper firper firl \ textsc {Mathrm {m_ mathrm {m_ mathrm {m_ \ odot} 模型。我们验证MTNG740产生的星系性能与TNG模拟一致,包括最近的观察结果。我们专注于星系簇,并分析集群缩放关系和径向谱。我们表明,两者都与各种观察性约束都一致。我们证明,深灯酮上的SZ信号与普朗克极限一致。最后,我们将MTNG740簇与在Planck和SDSS-8 Redmapper Richness目录中发现的Galaxy簇进行了比较,也发现了很好的一致性。但是,{\ it同时}匹配集群质量,丰富度和compton- $ y $要求我们假设Planck簇的SZ质量估算值平均低于$ 0.2 $ 〜DEX。 MTNG740模拟为高分辨率流体力学计算的前所未有的体积提供了丰富的可能性,可以在星系,星系簇和大规模结构中研究重子,尤其是它们对即将进行的大型宇宙学调查的影响。
Cosmological simulations are an important theoretical pillar for understanding nonlinear structure formation in our Universe and for relating it to observations on large scales. In several papers, we introduce our MillenniumTNG (MTNG) project that provides a comprehensive set of high-resolution, large volume simulations of cosmic structure formation aiming to better understand physical processes on large scales and to help interpreting upcoming large-scale galaxy surveys. We here focus on the full physics box MTNG740 that computes a volume of $(740\,\mathrm{Mpc})^3$ with a baryonic mass resolution of $3.1\times~10^7\,\mathrm{M_\odot}$ using \textsc{arepo} with $80.6$~billion cells and the IllustrisTNG galaxy formation model. We verify that the galaxy properties produced by MTNG740 are consistent with the TNG simulations, including more recent observations. We focus on galaxy clusters and analyse cluster scaling relations and radial profiles. We show that both are broadly consistent with various observational constraints. We demonstrate that the SZ-signal on a deep lightcone is consistent with Planck limits. Finally, we compare MTNG740 clusters with galaxy clusters found in Planck and the SDSS-8 RedMaPPer richness catalogue in observational space, finding very good agreement as well. However, {\it simultaneously} matching cluster masses, richness, and Compton-$y$ requires us to assume that the SZ mass estimates for Planck clusters are underestimated by $0.2$~dex on average. Thanks to its unprecedented volume for a high-resolution hydrodynamical calculation, the MTNG740 simulation offers rich possibilities to study baryons in galaxies, galaxy clusters, and in large scale structure, and in particular their impact on upcoming large cosmological surveys.