论文标题
渐近抗DE保姆时期的两个重力理论的故事
A tale of two theories of gravity in asymptotically Anti-de Sitter spacetime
论文作者
论文摘要
我们考虑了重力理论的两个BF公式,其负宇宙常数,Plebanski和MacDowell-Mansouri。两者都给出了大容量的标准爱因斯坦方程,但边缘电荷表达式有所不同。我们在ADS-SCHWARZSCHILD,ADS-KERR和ADS-TAUB-NUT SOLUTIONS的两个理论中明确计算渐近电荷。我们发现,在平民理论的情况下,指控是不同的,但它们对于MacDowell-Mansouri理论是有限的。此外,我们表明,在任意渐近的情况下,MacDowell-Mansouri渐近电荷,动作和符号形式都是有限的。因此,MacDowell-Mansouri在渐近广告空间中的重力理论不需要任何反对。
We consider two BF formulations of the theory of gravity with a negative cosmological constant, of Plebanski and of MacDowell-Mansouri. Both give the standard Einstein equations in the bulk but differ in expressions of edge charges. We compute the asymptotic charges explicitly in both theories for AdS-Schwarzschild, AdS-Kerr, and AdS-Taub--NUT solutions. We find that while in the case of the Plebanski theory the charges are divergent, they are finite for MacDowell-Mansouri theory. Furthermore, we show that in the case of the arbitrary asymptotically AdS spacetimes, MacDowell--Mansouri asymptotic charges, action, and symplectic form are all finite. Therefore MacDowell-Mansouri theory of gravity in asymptotically AdS spaces does not need any counterterms.