论文标题
对Multigrid Ensemble Kalman Filter的内部循环的优化参数推断
Optimized parametric inference for the inner loop of the Multigrid Ensemble Kalman Filter
论文作者
论文摘要
Multigrid Ensemble Kalman过滤器的基本特征(G. Moldovan,G。Lehnasch,L。Cordier,M。Meldi,Multigrid/Ensemble/Ensemble Kalman滤波器效果不稳定流量的策略,计算物理学杂志443-110481杂志)最近提出了对流体流动的数据,并评估了这篇文章。该分析的重点是由于内部循环而提高的性能。在此步骤中,根据跨越方法的较高分辨率水平计算的解决方案的数据用作替代观测值,以改善网格最粗糙水平的模型预测。后者表示用于运行整体成员进行全局数据同化的分辨率水平。该方法在两个经典的一维问题上进行了测试,即线性对流问题和汉堡方程。分析包括许多不同方面,例如不同的网格分辨率。结果表明,内部循环的贡献对于获得准确的流动重建和全局参数优化至关重要。这些发现开放了针对网格依赖性降低阶模型的令人兴奋的观点,该模型广泛用于流体力学应用中,用于复杂流,例如大涡模拟(LES)。
Essential features of the Multigrid Ensemble Kalman Filter (G. Moldovan, G. Lehnasch, L. Cordier, M. Meldi, A multigrid/ensemble Kalman filter strategy for assimilation of unsteady flows, Journal of Computational Physics 443-110481) recently proposed for Data Assimilation of fluid flows are investigated and assessed in this article. The analysis is focused on the improvement in performance due to the inner loop. In this step, data from solutions calculated on the higher resolution levels of the multigrid approach are used as surrogate observations to improve the model prediction on the coarsest levels of the grid. The latter represents the level of resolution used to run the ensemble members for global Data Assimilation. The method is tested over two classical one-dimensional problems, namely the linear advection problem and the Burgers' equation. The analyses encompass a number of different aspects, such as different grid resolutions. The results indicate that the contribution of the inner loop is essential in obtaining accurate flow reconstruction and global parametric optimization. These findings open exciting perspectives of application to grid-dependent reduced-order models extensively used in fluid mechanics applications for complex flows, such as Large Eddy Simulation (LES).