论文标题

向后误误分析兰开斯双音节化,并重新定义

Backward error analysis of the Lanczos bidiagonalization with reorthogonalization

论文作者

Li, Haibo, Tan, Guangming, Zhao, Tong

论文摘要

$ k $ step lanczos bidiagonalizatization降低了一个矩阵$ a \ in \ mathbb {r}^{m \ times n} $中的bidiagonal form $ b_k \ in \ in \ mathbb {r} $ u_ {k+1} \ in \ mathbb {r}^{m \ times(k+1)} $和$ v_ {k+1} \ in \ mathbb {r}^n \ times {n \ times {(k+1)}}} $。但是,该算法的任何实际实施都遭受$ u_ {k+1} $和$ v_ {k+1} $的正交性损失,这是由于存在四舍五入错误,并且提出了几种重组策略,以维持某种水平的正交性。在本文中,通过以一般形式编写各种重新安装策略,我们对兰开斯比二拟化作用进行了向后的误差分析(LBRO)。我们的结果表明,$ k $ step lbro $ a $的计算$ b_k $与启动矢量$ b $是由$ k $ - step lanczos lanczos bidiagonalization $ a+e $与启动vector $ b+b+δ_{b} $(lb e+a+e e+e e e e+e e e a+e e a+efuly)所产生的$ b_k $。向量/矩阵$δ_{b} $和$ e $取决于$ u_ {k+1} $和$ v_ {k+1} $的圆形单位和正交级别。结果还表明,$ u_ {k+1} - \ bar {u} _ {k+1} $和$ v_ {k+1} - \ bar {v} _ {k+1} $由$ u__ {k+1} $ u_ {k+1} $ v _ {k+1}控制, $ \ bar {u} _ {k+1} $和$ \ bar {v} _ {k+1} $是由$ k $ -Step lb($ a+e,b+e,b+δ_{b} $)生成的两个正式矩阵,因此,只要$ u_ {k+1} $和$ v_ {k+1} $的正交性就足够好,$ k $ - 步骤lbro是混合的前向稳定稳定的。我们使用此结果来研究基于LBRO的SVD计算算法和LSQR算法的向后稳定性。进行数值实验以确认我们的结果。

The $k$-step Lanczos bidiagonalization reduces a matrix $A\in\mathbb{R}^{m\times n}$ into a bidiagonal form $B_k\in\mathbb{R}^{(k+1)\times k}$ while generates two orthonormal matrices $U_{k+1}\in\mathbb{R}^{m\times (k+1)}$ and $V_{k+1}\in\mathbb{R}^{n\times {(k+1)}}$. However, any practical implementation of the algorithm suffers from loss of orthogonality of $U_{k+1}$ and $V_{k+1}$ due to the presence of rounding errors, and several reorthogonalization strategies are proposed to maintain some level of orthogonality. In this paper, by writing various reorthogonalization strategies in a general form we make a backward error analysis of the Lanczos bidiagonalization with reorthogonalization (LBRO). Our results show that the computed $B_k$ by the $k$-step LBRO of $A$ with starting vector $b$ is the exact one generated by the $k$-step Lanczos bidiagonalization of $A+E$ with starting vector $b+δ_{b}$ (denoted by LB($A+E,b+δ_{b}$)), where the 2-norm of perturbation vector/matrix $δ_{b}$ and $E$ depend on the roundoff unit and orthogonality levels of $U_{k+1}$ and $V_{k+1}$. The results also show that the 2-norm of $U_{k+1}-\bar{U}_{k+1}$ and $V_{k+1}-\bar{V}_{k+1}$ are controlled by the orthogonality levels of $U_{k+1}$ and $V_{k+1}$, respectively, where $\bar{U}_{k+1}$ and $\bar{V}_{k+1}$ are the two orthonormal matrices generated by the $k$-step LB($A+E,b+δ_{b}$) in exact arithmetic. Thus the $k$-step LBRO is mixed forward-backward stable as long as the orthogonality of $U_{k+1}$ and $V_{k+1}$ are good enough. We use this result to investigate the backward stability of LBRO based SVD computation algorithm and LSQR algorithm. Numerical experiments are made to confirm our results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源