论文标题
关于加权在线双方匹配的排名和平衡的扰动功能
On the Perturbation Function of Ranking and Balance for Weighted Online Bipartite Matching
论文作者
论文摘要
排名和平衡可以说是在线匹配文献中最重要的两个算法。对于Karp,Vazirani和Vazirani(STOC 1990),它们的积分版本和在线双方匹配的集成版本和分数版本的相同最佳竞争比率(1990年)。这两种算法已被推广到加权的在线二手匹配问题,包括通过使用扰动功能,包括顶点加权的在线双分匹配和AdWords。扰动函数的规范选择为$ f(x)= 1-e^{x-1} $,因为它导致两种设置的最佳竞争比率为$ 1-1/e $。 我们在本文中促进了对排名和平衡的加权概括的理解,重点是研究不同的扰动函数的效果。首先,我们证明了规范的扰动函数是\ emph {unique}最佳扰动函数,用于顶点加权的在线双方匹配。与之形成鲜明对比的是,所有扰动功能在未加权的设置中达到了$ 1-1/e $的最佳竞争比率。其次,我们证明使用规范扰动功能将排名对具有未知预算的AdWords的概括最多为0.624美元,竞争,驳斥了Vazirani(2021)的猜想。更普遍的是,作为第一个结果的应用,我们证明没有扰动功能通过建立$ 1-1/e-0.0003 $的上限来导致$ 1-1/e $的明显竞争比率。 最后,我们提出了在线预算添加的福利最大化问题,该问题介于预算未知的AdWords和AdWords之间,并且通过概括余额,我们设计了最佳$ 1-1/e竞争算法。
Ranking and Balance are arguably the two most important algorithms in the online matching literature. They achieve the same optimal competitive ratio of $1-1/e$ for the integral version and fractional version of online bipartite matching by Karp, Vazirani, and Vazirani (STOC 1990) respectively. The two algorithms have been generalized to weighted online bipartite matching problems, including vertex-weighted online bipartite matching and AdWords, by utilizing a perturbation function. The canonical choice of the perturbation function is $f(x)=1-e^{x-1}$ as it leads to the optimal competitive ratio of $1-1/e$ in both settings. We advance the understanding of the weighted generalizations of Ranking and Balance in this paper, with a focus on studying the effect of different perturbation functions. First, we prove that the canonical perturbation function is the \emph{unique} optimal perturbation function for vertex-weighted online bipartite matching. In stark contrast, all perturbation functions achieve the optimal competitive ratio of $1-1/e$ in the unweighted setting. Second, we prove that the generalization of Ranking to AdWords with unknown budgets using the canonical perturbation function is at most $0.624$ competitive, refuting a conjecture of Vazirani (2021). More generally, as an application of the first result, we prove that no perturbation function leads to the prominent competitive ratio of $1-1/e$ by establishing an upper bound of $1-1/e-0.0003$. Finally, we propose the online budget-additive welfare maximization problem that is intermediate between AdWords and AdWords with unknown budgets, and we design an optimal $1-1/e$ competitive algorithm by generalizing Balance.