论文标题
深度对比:在3DPM图像上进行自我监督的预处理以进行采矿材料分类
Depth Contrast: Self-Supervised Pretraining on 3DPM Images for Mining Material Classification
论文作者
论文摘要
这项工作提出了一种新型的自我监督表示方法,以学习有效的表示,而没有在3DPM传感器(3维粒子测量值;估计材料的粒度分布)上使用RGB图像和传送带带上采矿材料的深度图的图像。传感器生成数据的物质类别的人体注释稀缺且成本密集。当前,没有人类注释的表示形式学习仍未探索用于采矿材料,并且不利用传感器生成数据的利用。所提出的方法,深度对比,可以通过利用深度图和归纳传输来对3DPM数据集上没有标签的表示形式进行自我监督的学习。所提出的方法在完全监督的学习设置中优于ImageNet传递学习绩效的材料分类,而F1得分为0.73。此外,提出的方法在半监督环境中的F1得分为0.65,比成像网传递学习性能提高了11%,当仅20%的标签用于微调时。最后,提出的方法在线性评估上展示了改进的性能概括。在GitHub上可以使用建议的方法的实现。
This work presents a novel self-supervised representation learning method to learn efficient representations without labels on images from a 3DPM sensor (3-Dimensional Particle Measurement; estimates the particle size distribution of material) utilizing RGB images and depth maps of mining material on the conveyor belt. Human annotations for material categories on sensor-generated data are scarce and cost-intensive. Currently, representation learning without human annotations remains unexplored for mining materials and does not leverage on utilization of sensor-generated data. The proposed method, Depth Contrast, enables self-supervised learning of representations without labels on the 3DPM dataset by exploiting depth maps and inductive transfer. The proposed method outperforms material classification over ImageNet transfer learning performance in fully supervised learning settings and achieves an F1 score of 0.73. Further, The proposed method yields an F1 score of 0.65 with an 11% improvement over ImageNet transfer learning performance in a semi-supervised setting when only 20% of labels are used in fine-tuning. Finally, the Proposed method showcases improved performance generalization on linear evaluation. The implementation of proposed method is available on GitHub.