论文标题

Turán的表面数量

The Turán Number of Surfaces

论文作者

Sankar, Maya

论文摘要

我们表明有一个常数的$ c $,使得带有$ n $ Vertices的任何3均匀的HyperGraph $ \ Mathcal H $,至少$ CN^{5/2} $ edges包含对真实投射平面的三角剖分。这解决了Kupavskii,Polyanskii,Tomon和Zakharov的猜想。此外,我们的工作与先前的结果相结合,渐近地确定了所有表面的Turán数量。

We show that there is a constant $c$ such that any 3-uniform hypergraph $\mathcal H$ with $n$ vertices and at least $cn^{5/2}$ edges contains a triangulation of the real projective plane as a subgraph. This resolves a conjecture of Kupavskii, Polyanskii, Tomon, and Zakharov. Furthermore, our work, combined with prior results, asymptotically determines the Turán number of all surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源