论文标题
图形上某些操作的强统治数
Strong domination number of some operations on a graph
论文作者
论文摘要
令$ g =(v(g),e(g))$为一个简单的图形。如果每个顶点$ x \ in v(g)\ setminus d $ in a seet $ d \ subseteq v(g)$是$ g $的强大主导套件,那么d $ in d $ in e(g)$ in(g)$和$ deg(x)\ leq deg(y)$。强统治数$γ_{st}(g)$定义为强主体的最小基数。在本文中,当$ g $通过$ g $的边缘(或边缘)的操作修改时,我们检查了$γ_{st}(g)$的影响。
Let $G=(V(G),E(G))$ be a simple graph. A set $D\subseteq V(G)$ is a strong dominating set of $G$, if for every vertex $x\in V(G)\setminus D$ there is a vertex $y\in D$ with $xy\in E(G)$ and $deg(x)\leq deg(y)$. The strong domination number $γ_{st}(G)$ is defined as the minimum cardinality of a strong dominating set. In this paper, we examine the effects on $γ_{st}(G)$ when $G$ is modified by operations on edge (or edges) of $G$.