论文标题

具有确定性事实知识的培训前语言模型

Pre-training Language Models with Deterministic Factual Knowledge

论文作者

Li, Shaobo, Li, Xiaoguang, Shang, Lifeng, Sun, Chengjie, Liu, Bingquan, Ji, Zhenzhou, Jiang, Xin, Liu, Qun

论文摘要

先前的作品表明,预训练的语言模型(PLM)可以捕获事实知识。但是,一些分析表明,PLM无法强大地执行它,例如,在提取事实知识时对提示的变化敏感。为了减轻此问题,我们建议让PLM学习其余上下文与蒙版内容之间的确定性关系。确定性关系可确保可以根据上下文中的现有线索确定性地推断出掩盖的事实内容。这将为PLM提供更稳定的模式来捕获事实知识,而不是随机掩盖。进一步引入了两个预训练任务,以激发PLM在填充口罩时依靠确定性关系。具体而言,我们使用外部知识库(KB)来识别确定性关系,并使用所提出的方法不断预先培训PLM。事实知识探测实验表明,在事实知识捕获的事实知识中,持续预先训练的PLM具有更好的鲁棒性。关于提问数据集的进一步实验表明,尝试与所提出的方法学习确定性关系也可以帮助其他知识密集型任务。

Previous works show that Pre-trained Language Models (PLMs) can capture factual knowledge. However, some analyses reveal that PLMs fail to perform it robustly, e.g., being sensitive to the changes of prompts when extracting factual knowledge. To mitigate this issue, we propose to let PLMs learn the deterministic relationship between the remaining context and the masked content. The deterministic relationship ensures that the masked factual content can be deterministically inferable based on the existing clues in the context. That would provide more stable patterns for PLMs to capture factual knowledge than randomly masking. Two pre-training tasks are further introduced to motivate PLMs to rely on the deterministic relationship when filling masks. Specifically, we use an external Knowledge Base (KB) to identify deterministic relationships and continuously pre-train PLMs with the proposed methods. The factual knowledge probing experiments indicate that the continuously pre-trained PLMs achieve better robustness in factual knowledge capturing. Further experiments on question-answering datasets show that trying to learn a deterministic relationship with the proposed methods can also help other knowledge-intensive tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源