论文标题
在$ \ mathcal n = 2 $ supersymmetric gauge理论上,$ s_b^3/\ mathbb {z} _r $上
On Bailey pairs for $\mathcal N=2$ supersymmetric gauge theories on $S_b^3/\mathbb{Z}_r$
论文作者
论文摘要
我们研究了Bailey对构造的双曲超几何积分身份,该身份通过镜头分区的双重性函数获得的三维$ \ MATHCAL n = 2 $ supersymmetric Gauge理论上的$ S_B^3/\ Mathbb {Z}} _r $。小说的贝利对是为星际三角关系,星星的关系和五角大楼身份而构建的。它们中的前两个是Ising型集成晶格模型的集成性条件。最后一个对应于三角形3个manifolds的基本$ 2-3 $ Pachner Move的表示。
We study Bailey pairs construction for hyperbolic hypergeometric integral identities acquired via the duality of lens partitions functions for the three-dimensional $\mathcal N=2$ supersymmetric gauge theories on $S_b^3/\mathbb{Z}_r$. The novel Bailey pairs are constructed for the star-triangle relation, the star-star relation and the pentagon identity. The first two of them are integrability conditions for the Ising-type integrable lattice models. The last one corresponds to the representation of the basic $2-3$ Pachner move for triangulated 3-manifolds.