论文标题

DNN-Forwardtesting:使用统计时间表分析和深层神经网络的新交易策略验证

DNN-ForwardTesting: A New Trading Strategy Validation using Statistical Timeseries Analysis and Deep Neural Networks

论文作者

Letteri, Ivan, Della Penna, Giuseppe, De Gasperis, Giovanni, Dyoub, Abeer

论文摘要

通常,贸易商通过将其应用于历史市场数据(进行回测)来测试其交易策略,然后将其应用于未来的交易策略,从而在过去的数据上获得了最高利润。 在本文中,我们提出了一种称为DNN-Forwardtesting的新交易策略,该策略通过对深度神经网络预测的未来进行测试来确定该策略,该策略旨在进行股价预测,并接受了市场历史数据的培训。 为了生成这样的历史数据集,我们首先对一组十个证券进行探索性数据分析,尤其是通过基于K-Means的新程序来分析其波动性。然后,我们将数据集限制为具有相同波动系数的少数资产,并使用此类数据来训练深层馈送前馈神经网络,以预测未来30天的开放股票市场的价格。最后,我们的交易系统通过将其应用于DNNS预测并使用此类指标来指导其交易来计算最有效的技术指标。 结果证实,在执行此类预测时,神经网络的表现优于经典的统计技术,并且它们的预测允许选择一种交易策略,该策略在应用于实际未来时会提高预期,夏普,sortino和Calmar比率,而与传统的反测试相对于选择的策略。

In general, traders test their trading strategies by applying them on the historical market data (backtesting), and then apply to the future trades the strategy that achieved the maximum profit on such past data. In this paper, we propose a new trading strategy, called DNN-forwardtesting, that determines the strategy to apply by testing it on the possible future predicted by a deep neural network that has been designed to perform stock price forecasts and trained with the market historical data. In order to generate such an historical dataset, we first perform an exploratory data analysis on a set of ten securities and, in particular, analize their volatility through a novel k-means-based procedure. Then, we restrict the dataset to a small number of assets with the same volatility coefficient and use such data to train a deep feed-forward neural network that forecasts the prices for the next 30 days of open stocks market. Finally, our trading system calculates the most effective technical indicator by applying it to the DNNs predictions and uses such indicator to guide its trades. The results confirm that neural networks outperform classical statistical techniques when performing such forecasts, and their predictions allow to select a trading strategy that, when applied to the real future, increases Expectancy, Sharpe, Sortino, and Calmar ratios with respect to the strategy selected through traditional backtesting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源