论文标题

使用潜在变量发现新意图

Discovering New Intents Using Latent Variables

论文作者

Zhou, Yunhua, Liu, Peiju, Wang, Yuxin, QIu, Xipeng

论文摘要

发现新意图对于建立自举任务对话系统具有重要意义。大多数现有方法要么缺乏在已知意图数据中转移先验知识的能力,要么陷入忘记后续知识的困境。更重要的是,这些方法并不能深入探讨未标记数据的内在结构,因此他们无法寻找一般意图的特征。在本文中,从直觉开始,即发现意图可能对已知意图的识别有益,我们提出了一个概率框架,以发现意图分配被视为潜在变量。我们采用期望最大化框架进行优化。具体而言,在E-Step中,我们通过意图分配的后验来发现意图并探索未标记数据的内在结构。在M-Step中,我们通过优化标记数据的歧视来减轻从已知意图转移的先验知识的忘记。在三个挑战的现实世界数据集中进行的广泛实验表明,我们的方法可以实现实质性改进。

Discovering new intents is of great significance to establishing Bootstrapped Task-Oriented Dialogue System. Most existing methods either lack the ability to transfer prior knowledge in the known intent data or fall into the dilemma of forgetting prior knowledge in the follow-up. More importantly, these methods do not deeply explore the intrinsic structure of unlabeled data, so they can not seek out the characteristics that make an intent in general. In this paper, starting from the intuition that discovering intents could be beneficial to the identification of the known intents, we propose a probabilistic framework for discovering intents where intent assignments are treated as latent variables. We adopt Expectation Maximization framework for optimization. Specifically, In E-step, we conduct discovering intents and explore the intrinsic structure of unlabeled data by the posterior of intent assignments. In M-step, we alleviate the forgetting of prior knowledge transferred from known intents by optimizing the discrimination of labeled data. Extensive experiments conducted in three challenging real-world datasets demonstrate our method can achieve substantial improvements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源