论文标题
所有有限质量的狄拉克单极
All finite-mass Dirac monopoles
论文作者
论文摘要
我们提出了一种“原始”的方式,可以在$ U(1)$ guge理论中实现有限质量的dirac monopoles,该理论涉及单个非最低限度相互作用的标量字段。通常,这种类型的单极的能量密度不集中在其核心上,而是在球形壳中分布,正如我们在Bogomol'nyi-prasad-Sommerfield(BPS)限制中的几种精确溶液上所说明的那样。我们表明,我们的构造可以解释为通过偶极力矩与电磁场强度相连的无限巨大$ W $玻色子的极限。将我们的方法与Weinberg和Lee的想法相结合,我们提出了支持有限的质量Dirac Monopole的$ U(1)$ gauge模型的一般景观。实际上,所有经典的单孔,即Wu-Yang,T Hooft-Polyakov,Cho-Maison等,都是该景观的特殊点。
We present a "primitive" way of realizing finite-mass Dirac monopoles in $U(1)$ gauge theories involving a single non-minimally interacting scalar field. Typically, the energy density of this type of monopole is not concentrated at its core, but it is distributed in a spherical shell, as we illustrate on several exact solutions in the Bogomol'nyi-Prasad-Sommerfield (BPS) limit. We show that our construction can be interpreted as a limit of infinitely massive $W$ bosons coupled to electromagnetic field-strength via a dipole moment. Combining our approach with ideas of Weinberg and Lee, we present a general landscape of $U(1)$ gauge models that support a finite-mass Dirac monopole. In fact, all classical monopoles, i.e., Wu-Yang, 't Hooft-Polyakov, Cho-Maison, etc., are special points on this landscape.