论文标题
使用精益定理供体式化化学物理学
Formalizing Chemical Physics using the Lean Theorem Prover
论文作者
论文摘要
化学理论可以使用精益定理供奉献(一种复杂数学的互动定理谚语)更加严格。我们正式化了Langmuir并赌注的吸附理论,使每个科学前提都明确,并且明确了派生的每个步骤。 Lean的数学库Mathlib为无限几何序列提供了正式验证的定理,这对于BET理论至关重要。在编写这些证据时,精益促使我们包括最初没有报告的数学约束。我们还说明了通过使用功能,定义和结构的使用更复杂的理论建立在更复杂的理论的基础上的证据重复使用。最后,我们通过为经典的热力学和运动学创建结构来构建科学框架,以分别为Boyle的定律和牛顿力学基础的运动方程式形成正式的天然气定律关系。这种方法可以扩展到其他领域,从而使科学和工程学中富裕和复杂的理论形式化。
Chemical theory can be made more rigorous using the Lean theorem prover, an interactive theorem prover for complex mathematics. We formalize the Langmuir and BET theories of adsorption, making each scientific premise clear and every step of the derivations explicit. Lean's math library, mathlib, provides formally verified theorems for infinite geometries series, which are central to BET theory. While writing these proofs, Lean prompts us to include mathematical constraints that were not originally reported. We also illustrate how Lean flexibly enables the reuse of proofs that build on more complex theories through the use of functions, definitions, and structures. Finally, we construct scientific frameworks for interoperable proofs, by creating structures for classical thermodynamics and kinematics, using them to formalize gas law relationships like Boyle's Law and equations of motion underlying Newtonian mechanics, respectively. This approach can be extended to other fields, enabling the formalization of rich and complex theories in science and engineering.