论文标题

运动策略网络

Motion Policy Networks

论文作者

Fishman, Adam, Murali, Adithyavairan, Eppner, Clemens, Peele, Bryan, Boots, Byron, Fox, Dieter

论文摘要

在未知环境中无碰撞运动的产生是机器人操纵的核心构建块。由于多个目标,产生这种动议是具有挑战性的。解决方案不仅是最佳的,而且运动生成器本身必须足够快地进行实时性能,并且足够可靠地进行实际部署。已经提出了各种各样的方法,从本地控制器到全球规划师,通常被合并以抵消其缺点。我们提出了一种称为运动策略网络(M $π$ nets)的端到端神经模型,以从仅一个深度摄像头观察中产生无冲突的平滑运动。在超过500,000个环境中,M $π$网受过300万运动计划问题的培训。我们的实验表明,在表现出处理动态场景所需的反应性的同时,M $π$ nets的速度要快得多。它们比以前的神经计划师好46%,并且比本地控制政策更健壮。尽管仅接受了模拟训练,但M $π$ nets还是很好地转移到了带有嘈杂局部点云的真实机器人。代码和数据可在https://mpinets.github.io上公开获取。

Collision-free motion generation in unknown environments is a core building block for robot manipulation. Generating such motions is challenging due to multiple objectives; not only should the solutions be optimal, the motion generator itself must be fast enough for real-time performance and reliable enough for practical deployment. A wide variety of methods have been proposed ranging from local controllers to global planners, often being combined to offset their shortcomings. We present an end-to-end neural model called Motion Policy Networks (M$π$Nets) to generate collision-free, smooth motion from just a single depth camera observation. M$π$Nets are trained on over 3 million motion planning problems in over 500,000 environments. Our experiments show that M$π$Nets are significantly faster than global planners while exhibiting the reactivity needed to deal with dynamic scenes. They are 46% better than prior neural planners and more robust than local control policies. Despite being only trained in simulation, M$π$Nets transfer well to the real robot with noisy partial point clouds. Code and data are publicly available at https://mpinets.github.io.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源