论文标题
部分可观测时空混沌系统的无模型预测
Bounded-Regret MPC via Perturbation Analysis: Prediction Error, Constraints, and Nonlinearity
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study Model Predictive Control (MPC) and propose a general analysis pipeline to bound its dynamic regret. The pipeline first requires deriving a perturbation bound for a finite-time optimal control problem. Then, the perturbation bound is used to bound the per-step error of MPC, which leads to a bound on the dynamic regret. Thus, our pipeline reduces the study of MPC to the well-studied problem of perturbation analysis, enabling the derivation of regret bounds of MPC under a variety of settings. To demonstrate the power of our pipeline, we use it to generalize existing regret bounds on MPC in linear time-varying (LTV) systems to incorporate prediction errors on costs, dynamics, and disturbances. Further, our pipeline leads to regret bounds on MPC in systems with nonlinear dynamics and constraints.