论文标题
部分可观测时空混沌系统的无模型预测
Quantifying Complexity: An Object-Relations Approach to Complex Systems
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The best way to model, understand, and quantify the information contained in complex systems is an open question in physics, mathematics, and computer science. The uncertain relationship between entropy and complexity further complicates this question. With ideas drawn from the object-relations theory of psychology, this paper develops an object-relations model of complex systems which generalizes to systems of all types, including mathematical operations, machines, biological organisms, and social structures. The resulting Complex Information Entropy (CIE) equation is a robust method to quantify complexity across various contexts. The paper also describes algorithms to iteratively update and improve approximate solutions to the CIE equation, to recursively infer the composition of complex systems, and to discover the connections among objects across different lengthscales and timescales. Applications are discussed in the fields of engineering design, atomic and molecular physics, chemistry, materials science, neuroscience, psychology, sociology, ecology, economics, and medicine.