论文标题
部分可观测时空混沌系统的无模型预测
MetaASSIST: Robust Dialogue State Tracking with Meta Learning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Existing dialogue datasets contain lots of noise in their state annotations. Such noise can hurt model training and ultimately lead to poor generalization performance. A general framework named ASSIST has recently been proposed to train robust dialogue state tracking (DST) models. It introduces an auxiliary model to generate pseudo labels for the noisy training set. These pseudo labels are combined with vanilla labels by a common fixed weighting parameter to train the primary DST model. Notwithstanding the improvements of ASSIST on DST, tuning the weighting parameter is challenging. Moreover, a single parameter shared by all slots and all instances may be suboptimal. To overcome these limitations, we propose a meta learning-based framework MetaASSIST to adaptively learn the weighting parameter. Specifically, we propose three schemes with varying degrees of flexibility, ranging from slot-wise to both slot-wise and instance-wise, to convert the weighting parameter into learnable functions. These functions are trained in a meta-learning manner by taking the validation set as meta data. Experimental results demonstrate that all three schemes can achieve competitive performance. Most impressively, we achieve a state-of-the-art joint goal accuracy of 80.10% on MultiWOZ 2.4.