论文标题
部分可观测时空混沌系统的无模型预测
Discrepancy Minimization in Input-Sparsity Time
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
A recent work by [Larsen, SODA 2023] introduced a faster combinatorial alternative to Bansal's SDP algorithm for finding a coloring $x \in \{-1, 1\}^n$ that approximately minimizes the discrepancy $\mathrm{disc}(A, x) := | A x |_{\infty}$ of a real-valued $m \times n$ matrix $A$. Larsen's algorithm runs in $\widetilde{O}(mn^2)$ time compared to Bansal's $\widetilde{O}(mn^{4.5})$-time algorithm, with a slightly weaker logarithmic approximation ratio in terms of the hereditary discrepancy of $A$ [Bansal, FOCS 2010]. We present a combinatorial $\widetilde{O}(\mathrm{nnz}(A) + n^3)$-time algorithm with the same approximation guarantee as Larsen's, optimal for tall matrices where $m = \mathrm{poly}(n)$. Using a more intricate analysis and fast matrix multiplication, we further achieve a runtime of $\widetilde{O}(\mathrm{nnz}(A) + n^{2.53})$, breaking the cubic barrier for square matrices and surpassing the limitations of linear-programming approaches [Eldan and Singh, RS&A 2018]. Our algorithm relies on two key ideas: (i) a new sketching technique for finding a projection matrix with a short $\ell_2$-basis using implicit leverage-score sampling, and (ii) a data structure for efficiently implementing the iterative Edge-Walk partial-coloring algorithm [Lovett and Meka, SICOMP 2015], and using an alternative analysis to enable ''lazy'' batch updates with low-rank corrections. Our results nearly close the computational gap between real-valued and binary matrices, for which input-sparsity time coloring was recently obtained by [Jain, Sah and Sawhney, SODA 2023].