论文标题

在动态模式分解中可预测性的Granger因果关系

Granger Causality for Predictability in Dynamic Mode Decomposition

论文作者

Revati, G., Shadab, Syed, Sonam, K., Wagh, S. R., Singh, N. M.

论文摘要

动态模式分解(DMD)技术提取了测量数据中系统的先天动态行为的主要模式。为了从测量数据中适当识别主要模式,DMD算法需要确保输入测量数据序列的质量。在该帐户上,用于验证DMD算法数据集的可用性,本文提出了两个条件:激发(PE)和Granger因果关系测试(GCT)。虚拟数据序列是使用Hankel矩阵表示设计的,以便随着新状态变量的添加,跨越基本系统模式的子空间的尺寸会增加。 PE条件为轨迹长度提供了下限,并且GCT提供了模型的顺序。满足PE条件可以估计近似线性模型,但是使用已识别模型的可预测性只能通过使用GCT搜索的数据之间的时间因子来确保。通过在多机电源系统(MMP)中使用相干性识别(CI)的应用程序验证了所提出的方法,这是瞬态稳定性分析中的基本现象。 PE条件和GCT的重要性通过在22 BUS SIX SIX GENERATOR系统上实施的各种案例研究证明。

The dynamic mode decomposition (DMD) technique extracts the dominant modes characterizing the innate dynamical behavior of the system within the measurement data. For appropriate identification of dominant modes from the measurement data, the DMD algorithm necessitates ensuring the quality of the input measurement data sequences. On that account, for validating the usability of the dataset for the DMD algorithm, the paper proposed two conditions: Persistence of excitation (PE) and the Granger Causality Test (GCT). The virtual data sequences are designed with the hankel matrix representation such that the dimensions of the subspace spanning the essential system modes are increased with the addition of new state variables. The PE condition provides the lower bound for the trajectory length, and the GCT provides the order of the model. Satisfying the PE condition enables estimating an approximate linear model, but the predictability with the identified model is only assured with the temporal causation among data searched with GCT. The proposed methodology is validated with the application for coherency identification (CI) in a multi-machine power system (MMPS), an essential phenomenon in transient stability analysis. The significance of PE condition and GCT is demonstrated through various case studies implemented on 22 bus six generator system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源