论文标题
拉姆西公制空间的分区
Ramsey partitions of metric spaces
论文作者
论文摘要
我们研究了公制空间的存在,对于任何固定颜色的颜色,包含固定起始空间k的单色同构拷贝。在主要定理中,我们构造了大小的空间\(2^{\ alleph_0} \),用于\(\ aleph_0 \)颜色的颜色,均为(\ ALEPH_0 \)颜色和任何size和size \ al y(k k \ \ \)。我们还为可数的超级\(k \)提供了稍弱的定理,但是,所得空间的大小〜\(\ aleph_1 \)。
We investigate the existence of metric spaces which, for any coloring with a fixed number of colors, contain monochromatic isomorphic copies of a fixed starting space K. In the main theorem we construct such a space of size \(2^{\aleph_0}\) for colorings with \(\aleph_0\) colors and any metric space \(K\) of size \(\aleph_0\). We also give a slightly weaker theorem for countable ultrametric \(K\) where, however, the resulting space has size~\(\aleph_1\).