论文标题

拉姆西公制空间的分区

Ramsey partitions of metric spaces

论文作者

Shelah, Saharon, Verner, Jonathan L.

论文摘要

我们研究了公制空间的存在,对于任何固定颜色的颜色,包含固定起始空间k的单色同构拷贝。在主要定理中,我们构造了大小的空间\(2^{\ alleph_0} \),用于\(\ aleph_0 \)颜色的颜色,均为(\ ALEPH_0 \)颜色和任何size和size \ al y(k k \ \ \)。我们还为可​​数的超级\(k \)提供了稍弱的定理,但是,所得空间的大小〜\(\ aleph_1 \)。

We investigate the existence of metric spaces which, for any coloring with a fixed number of colors, contain monochromatic isomorphic copies of a fixed starting space K. In the main theorem we construct such a space of size \(2^{\aleph_0}\) for colorings with \(\aleph_0\) colors and any metric space \(K\) of size \(\aleph_0\). We also give a slightly weaker theorem for countable ultrametric \(K\) where, however, the resulting space has size~\(\aleph_1\).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源