论文标题
Feigin-odesskii和polishchuk定义的椭圆形泊松支架的椭圆形泊松支架的齐剪叶
The symplectic leaves for the elliptic Poisson bracket on projective space defined by Feigin-Odesskii and Polishchuk
论文作者
论文摘要
本文确定了$ \ mathbb {c} \ Mathbb {p}^{n-1} $在Feigin和Odesskii发现的$ \ Mathbb {C} \ Mathbb {c} \ Mathbb {c} \ Mathbb {c} \ Mathbb {c} \ Mathbb {c} \ Mathbb {c} \ Mathbb {c} \ Mathbb {c} \ Mathbb {c} \ and odesskii,并独立于polish polishchuk发现的符号叶子。泊松支架是由一条全态线束确定的,$ n \ ge 3 $在一个属的紧凑riemann表面上,或等效地,由椭圆形的正常曲线$ e \ subseteq \ subseteq \ mathbb {c} \ mathbb {c} \ mathbb {p}^{n-1} $。象征性叶子是用较高的偏度品种至$ e $描述的。
This paper determines the symplectic leaves for a remarkable Poisson structure on $\mathbb{C}\mathbb{P}^{n-1}$ discovered by Feigin and Odesskii, and, independently, by Polishchuk. The Poisson bracket is determined by a holomorphic line bundle of degree $n \ge 3$ on a compact Riemann surface of genus one or, equivalently, by an elliptic normal curve $E\subseteq\mathbb{C}\mathbb{P}^{n-1}$. The symplectic leaves are described in terms of higher secant varieties to $E$.