论文标题

表皮:利用对形的几何形状进行单位图片合成

EpipolarNVS: leveraging on Epipolar geometry for single-image Novel View Synthesis

论文作者

Landreau, Gaétan, Tamaazousti, Mohamed

论文摘要

新颖的视图合成(NVS)可以通过不同的方法来解决,具体取决于一般环境:单个源图像,即简短的视频序列,精确或嘈杂的摄像头姿势信息,基于3D的信息,例如点云等。最具挑战性的场景,最具挑战性的场景,我们在这项工作中站在这项工作的地方,仅考虑一个独特的源图像,可以从另一个角度产生一个独特的源图像。但是,在这种棘手的情况下,最新的基于学习的解决方案通常很难整合相机的观点转换。实际上,外在信息通常通过低维矢量传递。甚至可能会出现这种相机姿势,当以欧拉角为参数时,可以通过单速表示进行量化。这种香草编码选择阻止了学习的架构连续推断出新的观点(从相机姿势的角度来看)。我们声称,通过利用与3D相关的概念(例如Ebolar Constraint),它存在一种更好地编码相对摄像头姿势的优雅方法。因此,我们引入了一种创新方法,将视图转换编码为2D特征图像。这样的相机编码策略为网络提供了有关摄像机在两个视图之间如何在太空中移动的有意义的见解。通过编码相机姿势信息作为有限数量的彩色面孔线,我们通过实验证明了我们的策略的表现优于香草编码。

Novel-view synthesis (NVS) can be tackled through different approaches, depending on the general setting: a single source image to a short video sequence, exact or noisy camera pose information, 3D-based information such as point clouds etc. The most challenging scenario, the one where we stand in this work, only considers a unique source image to generate a novel one from another viewpoint. However, in such a tricky situation, the latest learning-based solutions often struggle to integrate the camera viewpoint transformation. Indeed, the extrinsic information is often passed as-is, through a low-dimensional vector. It might even occur that such a camera pose, when parametrized as Euler angles, is quantized through a one-hot representation. This vanilla encoding choice prevents the learnt architecture from inferring novel views on a continuous basis (from a camera pose perspective). We claim it exists an elegant way to better encode relative camera pose, by leveraging 3D-related concepts such as the epipolar constraint. We, therefore, introduce an innovative method that encodes the viewpoint transformation as a 2D feature image. Such a camera encoding strategy gives meaningful insights to the network regarding how the camera has moved in space between the two views. By encoding the camera pose information as a finite number of coloured epipolar lines, we demonstrate through our experiments that our strategy outperforms vanilla encoding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源