论文标题

考虑动态障碍的自主停车的基于优化的运动计划:分层框架

Optimization-based Motion Planning for Autonomous Parking Considering Dynamic Obstacle: A Hierarchical Framework

论文作者

Chi, Xuemin, Liu, Zhitao, Huang, Jihao, Hong, Feng, Su, Hongye

论文摘要

本文介绍了一个层次结构框架,该框架集成了图形搜索算法和模型预测控制,以促进在约束环境中自动驾驶汽车(AVS)的有效停车操作。在高级计划阶段,该框架结合了基于方案的混合A*(SHA*),这是传统混合a*的优化变体,以在考虑静态障碍时生成初始路径。这种全局路径是低级NLP问题的初始猜测。在低水平优化阶段,基于非线性模型预测控制(NMPC)的框架被部署以规避动态障碍。 SHA*的性能通过148个模拟场景得到了经验验证,并且通过实时并行停车模拟证明了所提出的层次结构框架的功效。

This paper introduces a hierarchical framework that integrates graph search algorithms and model predictive control to facilitate efficient parking maneuvers for Autonomous Vehicles (AVs) in constrained environments. In the high-level planning phase, the framework incorporates scenario-based hybrid A* (SHA*), an optimized variant of traditional Hybrid A*, to generate an initial path while considering static obstacles. This global path serves as an initial guess for the low-level NLP problem. In the low-level optimizing phase, a nonlinear model predictive control (NMPC)-based framework is deployed to circumvent dynamic obstacles. The performance of SHA* is empirically validated through 148 simulation scenarios, and the efficacy of the proposed hierarchical framework is demonstrated via a real-time parallel parking simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源