论文标题

能源稳定有限差离散的边界和接口方法的动态束方程

Boundary and interface methods for energy stable finite difference discretizations of the dynamic beam equation

论文作者

Eriksson, Gustav, Werpers, Jonatan, Niemelä, David, Wik, Niklas, Zethrin, Valter, Mattsson, Ken

论文摘要

我们考虑通过零件有限差异方法(SBP-FD)的能量稳定求和,用于均匀和分段均匀的动态束方程(DBE)。以前,恒定系数问题已用SBP-FD以及惩罚项(SBP-SAT)解决了边界条件。在这项工作中,我们重新审视了此问题,并将SBP-SAT与投影方法(SBP-P)进行比较。我们还考虑了具有不连续系数的DBE,并介绍了新型的SBP-SAT,SBP-P和混合SBP-SAT-P离散化,以施加界面条件。数值实验表明,在准确性方面,所有考虑的方法都相似,但是对于恒定和分段恒定系数问题,SBP-P可以更有效地有效地有效(对于显式时间集成方法的限制性时间步长要求)。

We consider energy stable summation by parts finite difference methods (SBP-FD) for the homogeneous and piecewise homogeneous dynamic beam equation (DBE). Previously the constant coefficient problem has been solved with SBP-FD together with penalty terms (SBP-SAT) to impose boundary conditions. In this work we revisit this problem and compare SBP-SAT to the projection method (SBP-P). We also consider the DBE with discontinuous coefficients and present novel SBP-SAT, SBP-P and hybrid SBP-SAT-P discretizations for imposing interface conditions. Numerical experiments show that all methods considered are similar in terms of accuracy, but that SBP-P can be more computationally efficient (less restrictive time step requirement for explicit time integration methods) for both the constant and piecewise constant coefficient problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源