论文标题
黑洞空位中的显式符号方法
Explicit symplectic methods in black hole spacetimes
论文作者
论文摘要
太阳系中的许多哈密顿问题都是可分离的或分为两个分析解决方案的部分,因此为基于操作员的分裂和组成而为开发和应用的开发和应用提供了很大的机会。但是,这种构造通常无法在一般相对论中用于弯曲的空间,并修改了重力理论,因为这些弯曲的空间对应于不可分割的哈密顿量,而没有两部分分裂。最近,发现几个黑洞的空位,例如Schwarzschild Black Hole,可以构建显式的符号整合物,因为它们相应的哈密顿人可以分离成两个以上可显式整合的碎片。尽管包括Kerr Black Hole在内的其他一些弯曲的空间不存在这样的多部件拆分,但它们相应的适当时间转换汉密尔顿人确实如此。实际上,获得符号分析性整合分解算法的关键问题是如何拆分这些哈密顿量或时间转化的哈密顿人。考虑到这一想法,我们在弯曲的空间中开发了明确的综合方案。我们介绍了一类空间,将哈密顿人直接分为几个明确的整合术语。例如,旋转黑环的哈密顿量有13个部分。我们还介绍了两组空间,它们适当的时间转换汉密尔顿人具有理想的分裂。例如,在带有Disformal参数的Kerr-Newman解决方案的时间转换的哈密顿量中存在一个8部分。通过这种方式,在我们知道的大多数弯曲空间中,提出的符号分裂方法将被广泛用于轨道的长期整合。
Many Hamiltonian problems in the Solar System are separable or separate into two analytically solvable parts, and thus give a great chance to the development and application of explicit symplectic integrators based on operator splitting and composing. However, such constructions cannot in general be available for curved spacetimes in general relativity and modified theories of gravity, because these curved spacetimes correspond to nonseparable Hamiltonians without the two part splits. Recently, several black hole spacetimes such as the Schwarzschild black hole were found to allow the construction of explicit symplectic integrators, since their corresponding Hamiltonians are separable into more than two explicitly integrable pieces. Although some other curved spacetimes including the Kerr black hole do not exist such multi part splits, their corresponding appropriate time transformation Hamiltonians do. In fact, the key problem for the obtainment of symplectic analytically integrable decomposition algorithms is how to split these Hamiltonians or time transformation Hamiltonians. Considering this idea, we develop explicit sympelcetic schemes in curved spacetimes. We introduce a class of spacetimes whose Hamiltonians are directly split into several explicitly integrable terms. For example, the Hamiltonian of rotating black ring has a 13 part split. We also present two sets of spacetimes whose appropriate time transformation Hamiltonians have the desirable splits. For instance, an 8 part split exists in a time-transformed Hamiltonian of Kerr-Newman solution with disformal parameter. In this way, the proposed symplectic splitting methods will be used widely for long-term integrations of orbits in most curved spacetimes we have known.