论文标题

基于Langevin Dynamics算法E-Th $ \ Varepsilon $ o Poula用于不连续随机梯度的随机优化问题

Langevin dynamics based algorithm e-TH$\varepsilon$O POULA for stochastic optimization problems with discontinuous stochastic gradient

论文作者

Lim, Dong-Young, Neufeld, Ariel, Sabanis, Sotirios, Zhang, Ying

论文摘要

我们介绍了一种新的基于Langevin动力学的算法,称为e-th $ \ varepsilon $ o poula,以解决与不连续的随机梯度的优化问题,这些梯度自然出现在现实世界中,例如分数估计,矢量量化,cvar最小化,CVAR最小化和正则优化问题,这些问题涉及合并神经网络。我们在理论上和数字上都证明了e-th $ \ varepsilon $ o poula算法的适用性。更确切地说,在随机梯度平均是局部Lipschitz并满足无限条件下的一定凸度的条件下,我们在Wasserstein距离内建立了e-th $ \ varepsilon $ o poula的非反应误差范围,并为预期的多余风险提供了可控制的次要估算,可以对其进行仲裁。提供了金融和保险的三个关键应用程序,即多周期投资组合优化,多期投资组合优化中的转移学习以及保险索赔预测,涉及具有(泄漏)-Relu激活功能的神经网络。使用现实世界数据集进行的数值实验说明了与SGLD,TUSLA,ADAM和AMSGRAD相比,E-TH $ \ VAREPSILON $ O POULA的出色经验性能就模型准确性而言。

We introduce a new Langevin dynamics based algorithm, called e-TH$\varepsilon$O POULA, to solve optimization problems with discontinuous stochastic gradients which naturally appear in real-world applications such as quantile estimation, vector quantization, CVaR minimization, and regularized optimization problems involving ReLU neural networks. We demonstrate both theoretically and numerically the applicability of the e-TH$\varepsilon$O POULA algorithm. More precisely, under the conditions that the stochastic gradient is locally Lipschitz in average and satisfies a certain convexity at infinity condition, we establish non-asymptotic error bounds for e-TH$\varepsilon$O POULA in Wasserstein distances and provide a non-asymptotic estimate for the expected excess risk, which can be controlled to be arbitrarily small. Three key applications in finance and insurance are provided, namely, multi-period portfolio optimization, transfer learning in multi-period portfolio optimization, and insurance claim prediction, which involve neural networks with (Leaky)-ReLU activation functions. Numerical experiments conducted using real-world datasets illustrate the superior empirical performance of e-TH$\varepsilon$O POULA compared to SGLD, TUSLA, ADAM, and AMSGrad in terms of model accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源