论文标题

在$ \ mathbb {z}^d $上的Blume-Capel模型的三级临界点的存在

Existence of a tricritical point for the Blume-Capel model on $\mathbb{Z}^d$

论文作者

Gunaratnam, Trishen S., Krachun, Dmitrii, Panagiotis, Christoforos

论文摘要

我们证明了Blume-Capel模型在$ \ mathbb {z}^d $上的每一个$ d \ geq 2 $上的三级点。 $ d \ geq 3 $中的证明依赖于新颖的组合映射到较大图,艾森曼(Aizenman),杜米尼尔·波辛(Duminil-Copin)和sidoravious的技术(Comm。Math。Phys,2015年)以及著名的红外线绑定。在$ d = 2 $中,证明依赖于对蓝贝贝尔稀释的随机簇表示的交叉概率的定量分析。特别是,我们开发了二次切开术,其精神是Duminil-Copin and Tassion(MoscowMath。J.,2020),这使我们能够在$ d = 2 $中获得相位图的精细图片,包括所有地区的相关性渐近行为。最后,我们表明,用于建立稀释的随机簇模型的亚临界锐度的技术扩展到任何$ d \ geq 2 $。

We prove the existence of a tricritical point for the Blume-Capel model on $\mathbb{Z}^d$ for every $d\geq 2$. The proof in $d\geq 3$ relies on a novel combinatorial mapping to an Ising model on a larger graph, the techniques of Aizenman, Duminil-Copin, and Sidoravicious (Comm. Math. Phys, 2015), and the celebrated infrared bound. In $d=2$, the proof relies on a quantitative analysis of crossing probabilities of the dilute random cluster representation of the Blume-Capel. In particular, we develop a quadrichotomy result in the spirit of Duminil-Copin and Tassion (Moscow Math. J., 2020), which allows us to obtain a fine picture of the phase diagram in $d=2$, including asymptotic behaviour of correlations in all regions. Finally, we show that the techniques used to establish subcritical sharpness for the dilute random cluster model extend to any $d\geq 2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源