论文标题

在高度退化的球形图上

On highly degenerate CR maps of spheres

论文作者

della Sala, Giuseppe, Lamel, Bernhard, Reiter, Michael, Son, Duong Ngoc

论文摘要

对于$ n \ geq 4 $,我们将三维单元球的$(n-3)$ - 脱位平滑的Cr地图分类为$(2N-1)$ - 尺寸单位球体。这些地图中的每一个都包含在五维复合线性空间中,最多占两个图像,或者等同于四维图中的四个图中的一个图像。作为我们分类的副产品,我们获得了第三级理性地图的新示例,该图是$(n-3)$ - 仅沿适当的实际子变量退化,不等于多项式图。特别是,通过更改基点,可以构建新的非等级图的新家庭。

For $N \geq 4$ we classify the $(N-3)$-degenerate smooth CR maps of the three-dimensional unit sphere into the $(2N-1)$-dimensional unit sphere. Each of these maps has image being contained in a five-dimensional complex-linear space and is of degree at most two, or equivalent to one of the four maps into the five-dimensional sphere classified by Faran. As a byproduct of our classification we obtain new examples of rational maps of degree three which are $(N-3)$-degenerate only along a proper real subvariety and are not equivalent to polynomial maps. In particular, by changing the base point, it is possible to construct new families of nondegenerate maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源