论文标题

Zakai方程有效的蒙特卡洛计划

An efficient Monte Carlo scheme for Zakai equations

论文作者

Beck, Christian, Becker, Sebastian, Cheridito, Patrick, Jentzen, Arnulf, Neufeld, Ariel

论文摘要

在本文中,我们开发了一种数值方法,用于在高维度上有效近似某些Zakai方程的解。关键思想是将给定的Zakai SPDE转换为具有随机系数的PDE。我们表明,在适当的规律性假设对Zakai方程的系数上的假设下,相应的随机PDE承认了一个解决方案随机场,几乎所有实现随机系数的实现都可以写成是线性抛物线PDE的经典解决方案。这使得可以应用Feynman-kac公式来获得有效的蒙特卡洛方案来计算Zakai方程的近似解决方案。该方法在快速运行时间的最多25个维度中取得了良好的效果。

In this paper we develop a numerical method for efficiently approximating solutions of certain Zakai equations in high dimensions. The key idea is to transform a given Zakai SPDE into a PDE with random coefficients. We show that under suitable regularity assumptions on the coefficients of the Zakai equation, the corresponding random PDE admits a solution random field which, for almost all realizations of the random coefficients, can be written as a classical solution of a linear parabolic PDE. This makes it possible to apply the Feynman--Kac formula to obtain an efficient Monte Carlo scheme for computing approximate solutions of Zakai equations. The approach achieves good results in up to 25 dimensions with fast run times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源