论文标题
在Moiré量子模拟器中的Mott-Hubbard和Hund Physics之间切换
Switching between Mott-Hubbard and Hund physics in moiré quantum simulators
论文作者
论文摘要
迄今为止,莫特 - 哈伯德和洪德电子相关性已经在各种材料类别中实现。在这里,我们表明,一个Moiré同型人以可控的方式涵盖了两种物理。我们开发了一个微观多频道模型,我们通过动态平均场理论来解决,以非扰动地解决局部多体型相关性。我们演示了如何以扭曲角度,介电筛选和孔密度进行调谐,使我们能够在扭曲的WSE $ _2 $ BiLayer中切换Mott-Hubbard和Hund相关状态。基本机制是基于控制库仑相互作用驱动的轨道极化以及随之而来的本地单曲线和三重态旋转构型的能量。从比较与最近的实验传输数据,我们发现了从三重态电荷转移绝缘子到hund-mott金属的填充控制过渡的特征。我们的发现确立了扭曲的过渡金属二分法,作为一个可调的平台,用于从大型局部旋转力矩中出现的量子物质的外来阶段。
Mott-Hubbard and Hund electron correlations have been realized thus far in separate classes of materials. Here, we show that a single moiré homobilayer encompasses both kinds of physics in a controllable manner. We develop a microscopic multiband model that we solve by dynamical mean-field theory to nonperturbatively address the local many-body correlations. We demonstrate how tuning with twist angle, dielectric screening, and hole density allows us to switch between Mott-Hubbard and Hund correlated states in a twisted WSe$_2$ bilayer. The underlying mechanism is based on controlling Coulomb-interaction-driven orbital polarization and the energetics of concomitant local singlet and triplet spin configurations. From a comparison to recent experimental transport data, we find signatures of a filling-controlled transition from a triplet charge-transfer insulator to a Hund-Mott metal. Our finding establishes twisted transition metal dichalcogenides as a tunable platform for exotic phases of quantum matter emerging from large local spin moments.