论文标题
使用Matter-Wave光学元件与Bose-Einstein冷凝物在微重力中使用Matter-Wave光学元件进行长寿命
Proposal for a long-lived quantum memory using matter-wave optics with Bose-Einstein condensates in microgravity
论文作者
论文摘要
Bose-Einstein冷凝物是光学量子记忆的有前途的平台,但具有多种反应机制,导致记忆寿命短。尽管这些破坏性效应中的某些可以通过常规方法来缓解,但密度依赖于原子 - 原子碰撞最终将量子记忆寿命的上限设置为捕获的Bose-Einstein冷凝物中的S-timescales。我们提出了一种新的量子记忆技术,该技术利用微重力作为资源来最大程度地减少这种密度依赖性效果。我们表明,通过使用光原子镜头对自由扩展的原子合奏进行整理和重新关注,在理想的环境中,预期的内存寿命仅受背景真空的质量的限制。我们预计该方法可以在接地的微重力平台或空间任务中实验证明,最终导致{$ 10^{10} $}的空前的时间循环时间和前所未有的时间带宽产品
Bose-Einstein condensates are a promising platform for optical quantum memories, but suffer from several decoherence mechanisms, leading to short memory lifetimes. While some of these decoherence effects can be mitigated by conventional methods, density dependent atom-atom collisions ultimately set the upper limit of quantum memory lifetime to s-timescales in trapped Bose-Einstein condensates. We propose a new quantum memory technique that utilizes microgravity as a resource to minimize such density-dependent effects. We show that by using optical atom lenses to collimate and refocus the freely expanding atomic ensembles, in an ideal environment, the expected memory lifetime is only limited by the quality of the background vacuum. We anticipate that this method can be experimentally demonstrated in Earth-bound microgravity platforms or space missions, eventually leading to storage times of minutes and unprecedented time-bandwidth products of {$10^{10}$}