论文标题
带有HaarPooling消息传递的图形网络的JET标记算法
Jet tagging algorithm of graph network with HaarPooling message passing
论文作者
论文摘要
最近,已应用图形神经网络(GNN)的方法来解决高能物理学(HEP)中的问题,并显示出具有JET事件图表的夸克 - 格鲁隆标记的巨大潜力。在本文中,我们介绍了一种GNN的方法,并结合了Haarpooling操作来分析事件,称为Haarpooling消息传递神经网络(HMPNET)。在HMPNET中,HaarPooling不仅提取了图的特征,而且还嵌入了通过聚类不同粒子特征的K均值获得的其他信息。我们从五个不同的功能中构造HaarPool:Absolute Energy $ \ log E $,横向动量$ \ log P_T $,相对坐标$(Δη,δϕ)$,混合的$(\ log e,\ log log p_t)$和$(\ log log e,log e,\ log e,\ log p_t p_t,δη,δη,δη,δη,δη,δη,δη,Δη,δη,δη,Δη。结果表明,用于HaarPooling的适当选择提高了夸克 - 格鲁昂标签的准确性,因为向HMPNet添加$ \ log p_t $的额外信息均优于所有其他信息,而添加相对坐标信息$(δη,δη,δη,δη,δη,Δη,Δη,Δη,Δη,Δη,Δη,Δη,Δη,Δη,Δη,Δη,Δη,Δη,Δη,Δη,Δη,Δη,Δη,Δη,Δη,Δη,Δη,δη,不是很有效。这意味着,通过添加HaarPooling的有效粒子特征可以比仅纯消息传递中性网络(MPNN)获得更好的结果,这表明通过合并过程可以显着改善特征提取。最后,我们将$ p_t $订购的HMPNET研究与其他研究进行了比较,并证明HMPNET也是GNN算法的绝佳选择。
Recently methods of graph neural networks (GNNs) have been applied to solving the problems in high energy physics (HEP) and have shown its great potential for quark-gluon tagging with graph representation of jet events. In this paper, we introduce an approach of GNNs combined with a HaarPooling operation to analyze the events, called HaarPooling Message Passing neural network (HMPNet). In HMPNet, HaarPooling not only extracts the features of graph, but embeds additional information obtained by clustering of k-means of different particle features. We construct Haarpooling from five different features: absolute energy $\log E$, transverse momentum $\log p_T$, relative coordinates $(Δη,Δϕ)$, the mixed ones $(\log E, \log p_T)$ and $(\log E, \log p_T, Δη,Δϕ)$. The results show that an appropriate selection of information for HaarPooling enhances the accuracy of quark-gluon tagging, as adding extra information of $\log P_T$ to the HMPNet outperforms all the others, whereas adding relative coordinates information $(Δη,Δϕ)$ is not very effective. This implies that by adding effective particle features from HaarPooling can achieve much better results than solely pure message passing neutral network (MPNN) can do, which demonstrates significant improvement of feature extraction via the pooling process. Finally we compare the HMPNet study, ordering by $p_T$, with other studies and prove that the HMPNet is also a good choice of GNN algorithms for jet tagging.