论文标题

关于AI大语言模型中理解的辩论

The Debate Over Understanding in AI's Large Language Models

论文作者

Mitchell, Melanie, Krakauer, David C.

论文摘要

我们在AI研究社区中调查了当前的激烈辩论,内容涉及在任何重要意义上是否可以说大型的预训练的语言模型以及“理解”语言以及物理和社交状况的语言编码。我们描述了曾经和反对这种理解的论点,以及鉴于这些论点的更广泛的智力科学的关键问题。我们认为,可以开发出一种新的智力科学,可以洞悉不同的理解方式,其优势和局限性以及整合多种认知形式的挑战。

We survey a current, heated debate in the AI research community on whether large pre-trained language models can be said to "understand" language -- and the physical and social situations language encodes -- in any important sense. We describe arguments that have been made for and against such understanding, and key questions for the broader sciences of intelligence that have arisen in light of these arguments. We contend that a new science of intelligence can be developed that will provide insight into distinct modes of understanding, their strengths and limitations, and the challenge of integrating diverse forms of cognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源