论文标题

空缺中的激子的精细结构

Fine Structure of Excitons in Vacancy Ordered Halide Double Perovskites

论文作者

Cucco, Bruno, Katan, Claudine, Even, Jacky, Kepenekian, Mikael, Volonakis, George

论文摘要

在过去的几年中,已广泛探索了空缺的卤化双重钙壶(VODP),作为光电应用的有希望的无铅替代方案。然而,其光学特性构成的原子级机制仍然难以捉摸。在这项工作中,提出了对VODP家族中主要成员的激子特性的整个调查。我们采用了有关电子孔相互作用在VODP的电子和光学性质中的作用的AB-Initio计算和揭示关键细节。根据八面体中心的四位价金属的电子构型对材料家族进行采样。因此,由S,P和D封闭壳组成的价值由已知材料CS $ _ {2} $ snx $ _ {6} $,CS $ _ {2} $ _ {2} $ _ {2} $ _ {6} $ _ {6} $ _ {6} $和CS $ _ {2} $ _ {2} $ Zrx $ _ {6} $ _ {6} $(x)在G $ _ {0} $ w $ _ {0} $方法中研究了电子结构,而贝尔 - 盐盐方程的求解是为了说明电子孔相互作用,这些相互作用在家族的光学特性中起着至关重要的作用。详细的对称分析揭开了所有化合物的激子的精细结构。还报道了每种材料的激子结合能,激发波函数和暗亮分裂。结果表明,这些数量可以通过替代工程来调整范围广泛的范围,形成弗朗克型激子的范围。特别是,共享角落共享PB卤化物钙钛矿的电子价值的TE基材料预计具有以上1 eV的激子结合能,而激发子的黑色爆发分裂达到了100 MEV。我们的发现提供了对整个VODP材料家族的光学特性的基本理解,并强调了这些材料的光学特性实际上不是传统卤化物钙钛矿的合适替代品。

Vacancy ordered halide double perovskites (VODP) have been widely explored throughout the past few years as promising lead-free alternatives for optoelectronic applications. Yet, the atomic-scale mechanisms that underlie their optical properties remain elusive. In this work, a throughout investigation of the excitonic properties of key members within the VODP family is presented. We employ ab-initio calculations and unveil critical details regarding the role of electron-hole interactions in the electronic and optical properties of VODP. The materials family is sampled based on the electronic configuration of the tetravalent metal at the center of the octahedron. Hence, groups with a valence comprised of s, p and d closed-shells are represented by the known materials Cs$_{2}$SnX$_{6}$, Cs$_{2}$TeX$_{6}$ and Cs$_{2}$ZrX$_{6}$ (with X=Br, I), respectively. The electronic structure is investigated within the G$_{0}$W$_{0}$ method, while the Bethe-Salpeter equation is solved to account for electron-hole interactions that play a crucial role in the optical properties of the family. A detailed symmetry analysis unravels the fine structure of excitons for all compounds. The exciton binding energy, excitonic wavefunctions and the dark-bright splitting are also reported for each material. It is shown that these quantities can be tuned over a wide range, form Wannier to Frenkel-type excitons, through for example substitutional engineering. In particular, Te-based materials, which share the electronic valency of corner-sharing Pb halide perovskites, are predicted to have exciton binding energies of above 1 eV and a dark-bright splitting of the excitons reaching over 100 meV. Our findings provide a fundamental understanding of the optical properties of the entire family of VODP materials and highlight how these are not in fact suitable Pb-free alternatives to traditional halide perovskites.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源