论文标题

迈向大规模电离图的非高斯生成模型

Towards a non-Gaussian Generative Model of large-scale Reionization Maps

论文作者

Lin, Yu-Heng, Hassan, Sultan, Blancard, Bruno Régaldo-Saint, Eickenberg, Michael, Modi, Chirag

论文摘要

预计下一代大规模调查的高维数据集。这些数据集将提供有关星系形成和宇宙电离早期阶段的大量信息。从这些数据集中提取最大信息仍然是一个关键挑战。当前的宇宙电源模拟在计算上太昂贵了,无法提供足够的实现以实现测试不同的统计方法,例如参数推断。我们提出了仅基于其摘要统计数据的非高斯生成模型。我们直接从其功率光谱(PS)和小波相谐波(WPH)系数直接重建大规模电离场(气泡空间分布)。使用WPH,我们表明我们的模型有效地从摘要统计量的单个实现中生成了大规模电离图的新示例。我们使用气泡尺寸统计数据将模型与目标电离图进行比较,并在很大程度上找到了良好的一致性。与PS相比,我们的结果表明,WPH提供了最佳的摘要统计数据,这些统计数据可从高度非线性电离领域捕获大部分信息。

High-dimensional data sets are expected from the next generation of large-scale surveys. These data sets will carry a wealth of information about the early stages of galaxy formation and cosmic reionization. Extracting the maximum amount of information from the these data sets remains a key challenge. Current simulations of cosmic reionization are computationally too expensive to provide enough realizations to enable testing different statistical methods, such as parameter inference. We present a non-Gaussian generative model of reionization maps that is based solely on their summary statistics. We reconstruct large-scale ionization fields (bubble spatial distributions) directly from their power spectra (PS) and Wavelet Phase Harmonics (WPH) coefficients. Using WPH, we show that our model is efficient in generating diverse new examples of large-scale ionization maps from a single realization of a summary statistic. We compare our model with the target ionization maps using the bubble size statistics, and largely find a good agreement. As compared to PS, our results show that WPH provide optimal summary statistics that capture most of information out of a highly non-linear ionization fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源