论文标题
揭示了单方面匹配的偏好
Revealed Preferences of One-Sided Matching
论文作者
论文摘要
考虑Shapley和Scarf(1974)的对象分配(单面匹配)模型。当观察到最终分配但剂的偏好是未知的,什么时候分配可能会核心?这是Echenique,Lee,Shum和Yenmez(2013)中模型的单方面类似物。我构建了一个模型,其中严格的核心是可测试的 - 如果有首选项配置文件将其放在核心中,则分配是“合理化的”。通过这种方式,我发展了一个单方面匹配的偏好的理论。我研究了不可转让和可转让的公用事业设置中的合理性。在不可转让的公用事业设置中,只有在以下情况下,分配是合理化的:每当具有相同偏好的代理人处于相同的潜在交易周期时,它们都会获得相同的分配。在可转让的公用事业设置中,只有以下情况下,分配是合理化的:有一个价格向量支持分配作为竞争均衡;或等效地,它满足循环单调性条件。证据利用简单的图理论和组合优化,并将消费者需求的经典理论融合在一起,揭示了偏好和竞争平衡。
Consider the object allocation (one-sided matching) model of Shapley and Scarf (1974). When final allocations are observed but agents' preferences are unknown, when might the allocation be in the core? This is a one-sided analogue of the model in Echenique, Lee, Shum, and Yenmez (2013). I build a model in which the strict core is testable -- an allocation is "rationalizable" if there is a preference profile putting it in the core. In this manner, I develop a theory of the revealed preferences of one-sided matching. I study rationalizability in both non-transferrable and transferrable utility settings. In the non-transferrable utility setting, an allocation is rationalizable if and only if: whenever agents with the same preferences are in the same potential trading cycle, they receive the same allocation. In the transferrable utility setting, an allocation is rationalizable if and only if: there exists a price vector supporting the allocation as a competitive equilibrium; or equivalently, it satisfies a cyclic monotonicity condition. The proofs leverage simple graph theory and combinatorial optimization and tie together classic theories of consumer demand revealed preferences and competitive equilibrium.