论文标题
关于从头算量子嵌入的有效重建期望值
On the effective reconstruction of expectation values from ab initio quantum embedding
论文作者
论文摘要
量子嵌入是一条吸引人的途径,将大型相互作用的量子系统碎片到几个较小的辅助“群集”问题中,以利用相关物理的位置。在这项工作中,我们批判性地审查了重组这些零散溶液的方法,以计算包括总能量在内的非本地期望值。从密度矩阵嵌入理论中使用的期望值的民主分区开始,我们激励和开发了许多替代方法,从数值上证明了它们的效率和提高的准确性,从而提高了能量学和非元素性两体性观测值的群集大小的函数。这些方法考虑了通过整个群集中隐含的全局波函数的$ n $证明性值,以及对跨越多个片段的期望值的重要性,从而减轻了嵌入嵌入的基本局部局部性近似。我们清楚地证明了这些引入功能的价值,以随着群集大小的增加而可靠地提取可观察到的可观察到可观察到的稳健和系统收敛性,从而使较小的簇可用于所需的准确性,而不是从头开始波浪〜功能量量子嵌入中的传统方法。
Quantum embedding is an appealing route to fragment a large interacting quantum system into several smaller auxiliary `cluster' problems to exploit the locality of the correlated physics. In this work we critically review approaches to recombine these fragmented solutions in order to compute non-local expectation values, including the total energy. Starting from the democratic partitioning of expectation values used in density matrix embedding theory, we motivate and develop a number of alternative approaches, numerically demonstrating their efficiency and improved accuracy as a function of increasing cluster size for both energetics and non-local two-body observables in molecular and solid state systems. These approaches consider the $N$-representability of the resulting expectation values via an implicit global wave~function across the clusters, as well as the importance of including contributions to expectation values spanning multiple fragments simultaneously, thereby alleviating the fundamental locality approximation of the embedding. We clearly demonstrate the value of these introduced functionals for reliable extraction of observables and robust and systematic convergence as the cluster size increases, allowing for significantly smaller clusters to be used for a desired accuracy compared to traditional approaches in ab initio wave~function quantum embedding.