论文标题

Rapidai4EO:单个和多个时空的深度学习模型,用于更新Corine Land Cover产品

RapidAI4EO: Mono- and Multi-temporal Deep Learning models for Updating the CORINE Land Cover Product

论文作者

Bhugra, Priyash, Bischke, Benjamin, Werner, Christoph, Syrnicki, Robert, Packbier, Carolin, Helber, Patrick, Senaras, Caglar, Rana, Akhil Singh, Davis, Tim, De Keersmaecker, Wanda, Zanaga, Daniele, Wania, Annett, Van De Kerchove, Ruben, Marchisio, Giovanni

论文摘要

在遥感社区中,用卫星图像的土地使用土地覆盖(LULC)分类是当前研究活动的主要重点。但是,准确且适当的LULC分类仍然是一项具有挑战性的任务。在本文中,我们使用Rapidai4EO数据集中的有监督学习,评估了多个时间(单个时间步长)卫星图像的多个时间(每月时间序列)的性能。作为第一步,我们在单个时间步长以进行多标签分类(即单速率)训练了CNN模型。我们使用LSTM模型合并了时间序列图像,以评估来自卫星的多颞信号是否改善了CLC分类。结果表明,与单个时间序列方法相比,在每月时间序列图像上,使用多个颞类方法对15个类别的卫星图像进行分类约为0.89%。使用多个时空图像或单个颞图像中的功能,这项工作是迈向有效的变更检测和土地监测方法的一步。

In the remote sensing community, Land Use Land Cover (LULC) classification with satellite imagery is a main focus of current research activities. Accurate and appropriate LULC classification, however, continues to be a challenging task. In this paper, we evaluate the performance of multi-temporal (monthly time series) compared to mono-temporal (single time step) satellite images for multi-label classification using supervised learning on the RapidAI4EO dataset. As a first step, we trained our CNN model on images at a single time step for multi-label classification, i.e. mono-temporal. We incorporated time-series images using a LSTM model to assess whether or not multi-temporal signals from satellites improves CLC classification. The results demonstrate an improvement of approximately 0.89% in classifying satellite imagery on 15 classes using a multi-temporal approach on monthly time series images compared to the mono-temporal approach. Using features from multi-temporal or mono-temporal images, this work is a step towards an efficient change detection and land monitoring approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源