论文标题

关于网络的流行阈值

On the epidemic threshold of a network

论文作者

Cherniavskyi, V., Dennis, G., Kingan, S. R.

论文摘要

本文中检查的图形不变性是图的邻接矩阵的最大特征值。先前的工作证明了这种不变的关系之间的紧密关系,传染性传播在图表上的出生和死亡率以及随着时间的流逝的传染轨迹。我们首先进行模拟,以证实这一点,并根据众所周知的图形不变符来探讨关于出生和死亡率的界限。结果,由于网络中的顶点去除顶点而导致的最大特征值的变化是干预措施的最佳衡量,从而减慢了传染的​​蔓延。我们将图$ g $中顶点$ v $的差价定义为$ g $的最大特征值和$ g-v $之间的差额。尽管扩散中心性是一个独特的中心度度量,并且是区分图形的另一个图形不变性,但我们发现实验证据表明,以扩散中心性排名的顶点,而特征向量中心性排名的角度密切相关。由于特征向量的中心性比扩散中心性更容易计算,因此这证明使用特征向量中心是衡量扩展的量度,尤其是在未知部分的大型网络中。我们还研究了选择人口成员进行疫苗接种的两种策略。

The graph invariant examined in this paper is the largest eigenvalue of the adjacency matrix of a graph. Previous work demonstrates the tight relationship between this invariant, the birth and death rate of a contagion spreading on the graph, and the trajectory of the contagion over time. We begin by conducting a simulation confirming this and explore bounds on the birth and death rate in terms of well-known graph invariants. As a result, the change in the largest eigenvalue resulting from removal of a vertex in the network is the best measure of effectiveness of interventions that slow the spread of a contagion. We define the spread centrality of a vertex $v$ in a graph $G$ as the difference between the largest eigenvalues of $G$ and $G-v$. While the spread centrality is a distinct centrality measure and serves as another graph invariant for distinguishing graphs, we found experimental evidence that vertices ranked by the spread centrality and those ranked by eigenvector centrality are strongly correlated. Since eigenvector centrality is easier to compute than the spread centrality, this justifies using eigenvector centrality as a measure of spread, especially in large networks with unknown portions. We also examine two strategies for selecting members of a population to vaccinate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源